شبکه عصبی مصنوعی برای ارزیابی خطر اختلالات حرکتی در نوزادان
نویسندگان
چکیده
زمینه و هدف: پیش بینی اختلالات تکاملی بعدی در هنگام تولد بسیار با اهمیت است. این مطالعه با هدف پیشبینی اختلالات حرکتی کودکان با استفاده از شبکه عصبی مصنوعی artificial neuronal network -ann)) در دوره نوزادی طرحریزی شده است. روش کار: در این مطالعهی گذشتهنگر، 600 شیرخوار با معاینه عصبی طبیعی و 120 شیرخوار با معاینه عصبی غیر طبیعی بررسی شدند. برای انجام تحلیل، دادهها به صورت تصادفی به دو قسمت آموزشی و آزمایشی تقسیم شدند. فرآیند یادگیری با مجموعه اول (360 مورد) انجام شد. پس از آموزش شبکه، مرحله آزمایش شبکه با مجموعه دادههای آزمایشی (360 مورد دادههای باقیمانده) انجام پذیرفت. تحلیل دادهها با نرمافزارr نسخه 1/14 انجام شد. یافته ها: برای مقایسه صحت کلاس بندی دو مدل مبتنی بر مجموعه آزمایشی در پیشگویی اختلال حرکتی از جدول صحت کلاس بندی استفاده گردید. شاخصهای هماهنگی نشان داد که شبکه عصبی مصنوعی در مقایسه با مدل رگرسیون لجستیک دارای دقت پیشگویی بالاتری است و مجموع پیشگویی درست با/بدون اختلال حرکتی در شبکه عصبی مصنوعی 6/78 درصد در مقابل 9/73 درصد می باشد. سطح زیر منحنی مشخصه عملکرد در مورد شبکه عصبی مصنوعی 71/0 و در مدل رگرسیون لجستیک 68/0 به دست آمد. در مجموع، ویژگی و حساسیت شبکه عصبی مصنوعی در مقایسه با مدل رگرسیون به ترتیب 0/88 درصد در مقابل 0/85 درصد و 7/31 درصد در برابر 3/18 درصد به دست آمد. نتیجه گیری: توانایی شبکه عصبی مصنوعی و مدل رگرسیون لجستیک در پیش بینی کودکان بدون اختلال حرکتی مشابه بوده ولی توانایی شبکه عصبی مصنوعی در پیش بینی اختلال حرکتی بیشتر از مدل رگرسیونی است.
منابع مشابه
کاربرد مدل شبکه عصبی مصنوعی در پهنهبندی خطر زمینلغزش
ینلغزش بهعنوان یکی از مخاطرات طبیعی در مناطق کوهستانی محسوب میشود که هر ساله منجر به خسارات زیادی میشود. حوضه آبریز دوآب الشتر با داشتن چهرهای کوهستانی و مرتفع و شرایط طبیعی مختلف دارای استعداد بالقوه زمینلغزش است. هدف از این تحقیق پهنهبندی خطر زمینلغزش با استفاده از مدل شبکه عصبی مصنوعی در حوضه دوآب الشتر میباشد. بدین منظور ابتدا پزمارامترهای مؤثر در وقوع زمینلغزش استخراج و سپس لایه...
متن کاملمدل شبکه عصبی مصنوعی برای تخمین رسوبدهی حوزههای آبخیز
امروزه رسوبدهی حوزههای آبخیز از جمله مشکلات بهرهبرداری از منابع آبهای سطحی در جهان است. با توجه به نقش و اهمیت رسوب در عمر مفید سدهای کشور، عدم توجه به اندازهگیری و محاسبه دقیق آن، باعث اتلاف سرمایههای ملی میشود. بدیهی است که دقت تخمین میزان رسوبدهی، بستگی زیادی به روشهای محاسباتی، معادلات ارائه شده و دادهها یا اطلاعات تخمین رسوب دارد. چون عوامل مختلفی در فرسایش و تولید رسوب مؤثر است ...
متن کاملپیش بینی احتمال مرگومیر نوزادان نارس بستری در بخش مراقبتهای ویژه نوزادان بیمارستان قائم با استفاده مدل شبکه عصبی مصنوعی
Background and purpose: Despite rapid progress in medical treatments and acute care technology during the past 30 years alongside increasing costs of medical care, the analysis of outcomes such as mortality risk have been a challenge in intensive care units. The purpose of this study was to predict the mortality rate of premature infants in neonatal intensive care unit (NICU) using artificial n...
متن کاملکاربرد روش شبکه عصبی مصنوعی و مدلهای واریانس ناهمسانی شرطی در محاسبه ارزش در معرض خطر
ریسک بازار از عدم اطمینان در خصوص بازدهی آتی دارائیها در بازار نشأت میگیرد. امروزه معیارهای مختلفی برای بررسی انواع ریسک مرتبط با بازار، سبدهای مختلف دارائی، صنایع و ... به کار میروند. اما هر چند این معیارهای مختلف، اطلاعات ارزشمندی را برای فعالان بازار به همراه میآورند، لیکن هر یک به تنهایی نمیتوانند اطلاعات جامع و کاملی را در خصوص ریسک بازار و یا سبد سهام به دست دهند. به همین منظور، «ارز...
متن کاملارزیابی کارایی مدل شبکه عصبی مصنوعی برای ریزمقیاس نمایی و پیشبینی بلندمدت متغیرهای اقلیمی
Atmosphere–ocean coupled global climate models (GCMs) are the main source to simulate the climate of the earth climate. The computational grid of the GCMs is coarse and so, they are unable to provide reliable information for hydrological modelling. To eliminate such limitations, the downscaling methods are used. The present study is focused on simulating the impact of climate change on the beha...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مجله علوم پزشکی رازیجلد ۲۰، شماره ۱۱۵، صفحات ۳۱-۳۸
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023